An evolutionary relationship between Stearoyl-CoA Desaturase (SCD) protein sequences involved in fatty acid metabolism.
نویسندگان
چکیده
BACKGROUND Stearoyl-CoA desaturase (SCD) is a key enzyme that converts saturated fatty acids (SFAs) to monounsaturated fatty acids (MUFAs) in fat biosynthesis. Despite being crucial for interpreting SCDs' roles across species, the evolutionary relationship of SCD proteins across species has yet to be elucidated. This study aims to present this evolutionary relationship based on amino acid sequences. METHODS Using Multiple Sequence Alignment (MSA) and phylogenetic construction methods, a hypothetical evolutionary relationship was generated between the stearoyl-CoA desaturase (SCD) protein sequences between 18 different species. RESULTS SCD protein sequences from Homo sapiens, Pan troglodytes (chimpanzee), and Pongo abelii (orangutan) have the lowest genetic distances of 0.006 of the 18 species studied. Capra hircus (goat) and Ovis aries (Sheep) had the next lowest genetic distance of 0.023. These farm animals are 99.987% identical at the amino acid level. CONCLUSIONS The SCD proteins are conserved in these 18 species, and their evolutionary relationships are similar.
منابع مشابه
An Evolutionary Relationship Between Stearoyl-CoA Desaturase (SCD) Protein Sequences Involved in Fatty Acid Metabolism
Background: Stearoyl-CoA desaturase (SCD) is a key enzyme that converts saturated fatty acids (SFAs) to monounsaturated fatty acids (MUFAs) in fat biosynthesis. Despite being crucial for interpreting SCDs’ roles across species, the evolutionary relationship of SCD proteins across species has yet to be elucidated. This study aims to present this evolutionary relationship based on amino aci...
متن کاملInvestigation of (Stearoyl-CoA Desaturase 1) SCD1 Gene Polymorphism in Khuzestan Buffalo Population Using PCR-RFLPMethod
Stearoyl-CoA desaturase (SCD) is a rate-limiting enzyme in the biosynthesis of monounsaturated fatty acids (MUFA). A number of studies support the hypothesis that SCD gene regulation and polymorphism may affect fatty acid composition and fat quality in meat and milk. Single nucleotide polymorphisms in the coding region of the bovine stearoyl-CoA desaturase gene have been predicted to result in ...
متن کاملRegulation of stearoyl-CoA desaturase by polyunsaturated fatty acids and cholesterol.
The lipid composition of cellular membranes is regulated to maintain membrane fluidity. A key enzyme involved in this process is the membrane-bound stearoyl-CoA desaturase (SCD) which is the rate-limiting enzyme in the cellular synthesis of monounsaturated fatty acids from saturated fatty acids. A proper ratio of saturated to monounsaturated fatty acids contributes to membrane fluidity. Alterat...
متن کاملRegulation of ovine and porcine stearoyl coenzyme A desaturase gene promoters by fatty acids and sterols.
Stearoyl CoA desaturase (SCD) is responsible for converting SFA into MUFA and plays an important role in regulating the fatty acid composition of tissues. Although the number of SCD isoforms differs among species, SCD-1 is the predominant isoform expressed in the major lipogenic tissues of all species studied. The SCD-1 gene promoter region has been cloned for several species, including the hum...
متن کاملBiochemical and physiological function of stearoyl-CoA desaturase.
A key and highly regulated enzyme that is required for the biosynthesis of monounsaturated fatty acids is stearoyl-CoA desaturase (SCD), which catalyzes the D(9)-cis desaturation of a range of fatty acyl-CoA substrates. The preferred substrates are palmitoyl- and stearoyl-CoA, which are converted into palmitoleoyl- and oleoyl-CoA respectively. Oleate is the most abundant monounsaturated fatty a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Reports of biochemistry & molecular biology
دوره 3 1 شماره
صفحات -
تاریخ انتشار 2014